Square Kilometer Array

YERVANT TERZIAN CORNELL UNIVERSITY

<www.skatelescope.org>

The Big Bang Space Time

A rich history of discovery

- Many discoveries over the past 50yr
 - Pulsars

- Cosmic Evolution
- Dark Matter in galaxies
- Quasars
- Jets + Superluminal motion
- Gravitational Radiation
- Aperture Synthesis
- Cosmic Masers
- Giant Molecular Clouds

Radio provides unique information about the Universe

Non-thermal processes: quasars, pulsars, jets

Radio provides unique information about the Universe

Tracer for Cosmic Magnetic Fields
Fundamental Questions in Physics and Astronomy

"What are the basic properties of the fundamental particles and forces?"

Neutrinos, Magnetic Fields, Gravity, Gravitational Waves, Dark Energy

"What constitutes the missing mass of the Universe?"

Cold Dark Matter (e.g. via lensing), Dark Energy, Hot Dark Matter (neutrinos)

"What is the origin of the Universe and the observed structure and how did it evolve?"

Atomic hydrogen, epoch of reionization, magnetic fields, star-formation history.....

"How do planetary systems form and evolve?"

Planet Formation, Astrobiology, Radio flares from exo-planets.....

"Has life existed elsewhere in the Universe, and does it exist elsewhere now?"

SETI

Top Priorities for a New Generation Radio

Telescope

- Detect and image neutral hydrogen in the very early phases of the universe when the first stars and galaxies appeared – "epoch of re-ionisation"
- Locate 1 billion galaxies via their neutral hydrogen signature and measure their distribution in space – "dark energy"
- Origin and evolution of cosmic magnetic fields "the magnetic universe"
- Time pulsars to test description of gravity in the strong field case (pulsar-Black Hole binaries), and to detect gravitational waves
- Planet formation image Earth-sized gaps in protoplanetary disks

What instrument do we need? A radio telescope with

- sensitivity to detect and image atomic hydrogen at the edge of the universe → very large collecting area
- fast surveying capability over the whole sky → very large angle field of view
- capability for detailed imaging of the structures of the planetary gaps and how they change → large physical extent
- a wide frequency range to handle the science priorities

Key Technical Specifications

- collecting area of order 1 million square meters, array of
 ~5000 dishes each ~12 meters in diameter
- frequency range 100 MHz 25 GHz
- large instantaneous field of view 1 sq. deg. at 1.4 GHz
- configuration
 - •20% of total collecting area within 1 km diameter,
 - •50% of total collecting area within 5 km diameter,
 - •75% of total collecting area within 150 km diameter,
 - •100% of total collecting area within 3000 km from array core.

Future Sensitivity

Radio provides unique information about the Universe

Was Einstein Right?

Pulsars: Cosmic Lighthouses

Pulsars Collapsed stars with extreme physical properties

High Gravity Field 20000xSun Most accurate clocks known

10⁻⁹sec

Surveys with Parkes, Arecibo & GBT.

Simulated & actual pulsars shown

Yield ~ 1000 pulsars in ALFA survey

The Cradle of Life

- Test conditions for life elsewhere in the Universe
 - Image proto-planetary disks
 - Search for Extraterrestial intelligence

Today's hot new issues are tomorrow's old issues.

The excitement of the SKA will be not in the old questions it will answer but in the new questions it will raise!

SKA science book

Science with the Square Kilometre Array,

eds: C.Carilli, S.Rawlings, New Astronomy Reviews, Vol.48, Elsevier, Dec. 2004

www.skatelescope.org

Concepts

China KARST

Canadian aerostat

Antenna designs: India, US.

Australia: Luneburg Lenses and Cylinders

Dutch Fixed Planar Arrays

中国贵州省普定县 尚家冲喀斯特洼地 Brief Introduction on Shangjiachong Karst Depression in Puding County, Guizhou Province, China

Î

简

NxArecibo

Karst region for array of large Arecibo-like Telescopes

D > 200 m

中国 FAST 工程选址组 FAST 工程地方协调组 贵州省普定县人民政府 一九九九年十月

> Site Selection Group of China for FAST Engineering Program Local Coordination Group for FAST Engineering Program People's Government of Puding County, Guizhou Province

LAR Prototyping

Instrument Package

- •Focal Plane Array package covering 0.7-1.4 GHz
- RF Feed design
- Beam forming
- Reflector actuators

Multiple Feeds And Beams

Why parabolic dishes? experience sky coverage frequency coverage

U.S. Consortium Concept Synthesis Array

Large N/Small D

Why large N? collecting area dynamic range baseline diversity snapshot mode self-calibration RFI excision

Why small D? field-of-view minimizes cost

Reference Design

small dishes+smart feeds + aperture arrays on the "innovation path" + EoR array (0.1-0.3 GHz)

Inner core

Wide-angle radio camera + radio "fish-eye lens"

Station

SKA – not just antennas

ISPO

High speed data transport

- Tb/s from EACH station on scales of hundreds of km
- 100 Gb/s trans-continental and trans-oceanic links
- Longest links will rely on telcos and research networks
 - » Need government initiatives for affordable access

Signal processing

- Peta-ops per second
- Need highly scaleable solutions

Post-processing, information management

- New super-computer architectures
- Archive and sharing of data will be a major challenge

Infrastructure

- Civil, electrical (power, ...), communications
- Operations and support

SKA as e-science

ISPO

GOVERNANCE

SKA was "born global"; >50 institutes in 17 countries actively involved

International SKA Steering Committee (ISSC to SSEC)

21 members representing 11 countries –7 European (2 UK, France, Germany, 2 Netherlands, Italy)

- -7 United States
- -2 Canada
- -2 Australia
- -2 Asia (China, India)
- -1 South Africa
- -Observers from Japan, Russia

SKA: How much will it cost?

4400 x 12 m antennas	\$ 660 M
Receivers	170
Data transmission	40
Civil costs (central site)	65
Civil costs (outer configuration)	135
Signal processing	80
Computing hardware	80
Software development (660 man years)	50
Non-recurring engineering	60
Contingency (20%)	270
Total	\$1,610 M

Who is going to Pay for it?

- Plan 1
 - U.S. 1/3
 - Europe 1/3
 - RoW (Canada, Australia, Asia, Africa) 1/3
- Plan 2:
 - North America 40%
 - Europe 40%
 - RoW (including Japan) 20%

Percentages of Active Participants in SKA Committees, Working Groups and Task Forces

Where will the SKA be built?

- Northern (infrastructure) vs Southern (Galactic Center) hemisphere
- RFI environment
- Troposphere stability (high desert site)
- Ionospheric stability
- Political issues
- Preliminary proposals
 - U.S., Australia, South Africa, Argentina, Brazil, China
- Decision Oct. 2006 (short list of acceptable sites)

ISSC SHORT LISTED CORE SITES

SOUTH AFRICA

AUSTRALIA

SKA configuration Western Australia example

Site selection

Sydney: population 4 million

Narrabri: population 4000

Mileura: population 4

South Africa + 7 countries

South Africa

RFI Measurements

NATIONAL ATTRIBUTES

- Political and economic structure and stability
- Entry visas to all
- Ease of government interactions
- Import/export issues and taxes
- Access to foreign companies
- Land claims
- General support of science and technology
- Academic astronomy population
- Availability of engineers and technical personnel

POSSIBLE OUTCOMES

- 1) Winner takes all
- 2) Win-WinSKA-LO in one countrySKA-MID in the other country

Most of the SKA in one country A mega-station in the other country

Dishes in one country Aperture arrays in the other country (Some science duplications ??)

NOTE: Cost duplications ? And issues with all Win-Win models.

SKA IN THREE FREQUENCY BANDS

--SKA LOW 100 MHz TO 300 MHz --SKA MID 300 MHz TO 10 GHz --SKA HIGH 10 GHz TO 25-35 GHz

US SKA CONSORTIUM FOUNDED IN 1999 To promote the future of radio astronomy in the US universities and research centers, and to coordinate the SKA activities in the US

US SKA Consortium

Chair: Yervant Terzian (Cornell) Vice Chair: Joseph Lazio (NRL)

Caltech/JPL Cornell/NAIC Harvard/Smithsonian MIT/Haystack NRAO NRL SETI Institute University of Illinois University of New Mexico University of Wisconsin UC Berkeley Virginia Tech

