Human Factors and Systems Engineering Explorations of Spaceflight Operations

Barrett S. Caldwell, PhD, CHFP

Schools of Industrial Engineering / Aeronautics & Astronautics

Purdue University

GMRSG, Minneapolis, Sept 2010
Presentation Overview

- A Bit of Background
- Group Performance Environments Research (GROUPER) Lab Description
- Problems in Task Coordination and Information Flow
- Coordinating Expertise in Spaceflight Lifecycle Operations
- Ongoing Questions / Recent Projects
Where / When It Began

› Apollo 8 Mission, 1968: I want to be an astronaut!
The Group Performance Environments Research (GROUPER) Laboratory mission is to be a premier research and development team in the design, evaluation, analysis, and improvement of informed systems on Earth and in space.
Group Performance and Information Flow Factors

- Task needs
 - Type of information to share (e.g. system status)

- User characteristics
 - Expertise levels, level of interest, time willing / able to spend, system performance expectations

- Situational constraints
 - Information criticality, alternative sources, total time available to complete task
Systems Engineering Design Issues

› System Definition
 - What problems are you addressing?

› Components
 - What features are important to you?

› Flows and Interactions
 - How does stuff get from one “place” to another?

› Performance Criteria
 - How do you know when you’ve improved anything?
Tulga / Sheridan task paradigm
(from Sheridan, 1992, pg. 61)

Figure 1.32
Tulga multi-task selection paradigm. Displayed blocks are “tasks” to be done, which convey importance, duration required for completion, and time to deadline.
Multi-Tasking Issues and Problems

› What To Optimize?
 – People seem to optimize gain / cost, not absolute gain

› Performance Modeling
 – Multitasking vs Production processing

› Challenges Across Time Scales
 – “It took too long to write the to do list!”
 – Cognitive cues for lower-level tasks (indirect pointers)
The Challenge of Task Switching

› Effortful Cognitive “Executive” Function

› More Tasks = More Value of Expertise
 - Task evaluation
 - Task production speed
 - Task switching speed

› More Complex Rules = Less Performance!
 - Complexity of strategy: Tulga and Sheridan, Moray
 - Marginal gains from satisfactory to optimal
An “Information Clutch” for Task Coordination

INFORMATION SYSTEMS

PRODUCTION TASK OUTPUTS

TEAM & ORGANIZATIONAL INTERACTIONS

GMRSG, Minneapolis, Sept 2010

Purdue Engineering
Challenges to Support Clutch Coordination

› Experts Can Only Access Limited Domain Knowledge (Depth, Breadth)

› Mutual Awareness of Others’ Expertise and Activity

› Remote Systems Require Sensor and Communication Flows

› IT Not Self-Monitoring for Knowledge--Requires Human Support
Limiting Cases for Effective Task Load Management

› Time Available (Task Urgency)

› Time Available vs Time Required (Time Pressure)

› Overall Workload (Task Load)

› Success Criteria (Optimal vs Satisficing)

› Processing / Production Rules
Changing Roles for Human System Interfaces

- Person (operator, not always designer)
- Direct Observation
- Information and Communication Technology (ICT)
- Context Sharing
- Machine or Other Robotic Agent
 - IT usage
 - Context
 - ICT-2
 - Machine-2
 - ICT-3
 - Machine-3
Complex Expert Teams as Systems

› Components with Differing Functions

› Interactions of Information Technology, Human Expertise, and Task Context

› Linking Reference Information to Operational Experience via Context and Experience

› Problem Solving Approach to Improving Operational Performance
Time Scales in Research Fields

› Distinctions between individual and social processes

› Event dynamics ranging from attention to strategy

› Similar terms, but different tasks

Knowledge Development Research Emphases

- I/O Ψ & Management
- Grouper
- Social Psych
- Cog. Psych
- Indv
- Grp
- Org

10^{-1} \quad \text{time (sec)} \quad 10^7

GMRSG, Minneapolis, Sept 2010
Complex Expert Team
Management Issues

› Managing Complex Engineering System Technical Components and Interactions

› Managing Distributed Expertise in Team Members with Domain Responsibilities for Engineering System

› Managing Human Performance Elements for Distributed Team Members
Dimensions of Expertise in Expert Communities

- Communication Effectiveness
- Process
- Subject Matter Domain
- Information Flow Paths
- Interface Tools
- Application Context
- Expertise Distribution Network
Expertise Dimensions Linked

› Subject Matter and Application Context
 - Discipline ("Traditional") expertise and Situation Awareness (SA) for current context

› Expertise Distribution and Communication Effectiveness
 - "Know Who" and how to share information / coordinate tasks with them

› Interface Tools and Information Flow Paths
 - Interactions with technologies and interfaces, getting data and information to right place

› Compare to Multiple Intelligences and Group Performance Paradigms
 - Mathematical, Physical, Interpersonal; Task, Social, Tools
History of GROUPER
“STINGRAY” Projects (1997-2006)

› Spaceport Technologies and Information for Near-Earth and Ground Resource Analysis

› Analysis of Mission Control Center (MCC) Voice Loop Utilization During STS and ISS Simulations (Research Grant)

› Analysis of Flight Rule Change Requests and “Operations to Reference” Cycles (Summer Faculty Fellowship)

› Analysis of MCC Voice Loop Utilization During Live ISS Missions (SG Project)
History, page 2 (2006-present)

› Ground Operations Concept of Operations (SG Internship)

› *Ground Operations Information Flow (SG ESMD Project)*

› *Electronic Procedures for Ground Operations Technicians (SG Internship)*

› *Lunar Information Flow Modeling (SG S/F, Research)*

› Crew Autonomy Modeling (SG Internship, SBIR)
NASA Mission Control IT

Local Displays for Individual Experts

Shared Displays for Coordinated Awareness

White Flight Control Room: Shuttle Operations

GMRSG, Minneapolis, Sept 2010

Purdue Engineering
Distributed Supervisory Coordination (DSC) Model

Supervisory Controller Systems

Human-Human Communication Interfaces

Human Supervisory Controller

Human System Interfaces

Engineering System Being Controlled ("The World")

Human-Human Communication Interfaces

Human Supervisory Coordinator

Human-Human Communication Interfaces

Human Supervisory Controller

Human System Interfaces

ICT Systems

Comm Processes

System Expertise

GMRSG, Minneapolis, Sept 2010
Information Alignment as Coupling

› Effective Transfer from Entity to Entity
 - Flows without loss or entries of noise
 - Understanding of causes through effects

› Timing Coordination
 - Flow velocity compared to material velocity
 - Decision and task value depends on “right information in time”
Challenges to Mission Control

Alignment

› Multiple Sources of Delay
 - On-board processing and buffers
 - Satellite hops and transmission bandwidth
 - Knowledge processing among controllers

› Coordinating Team Understandings
 - Effective sharing between team members
 - Recognition of relevant expertise
Support for Hybrid Coordination

Engineer tagups

Asynchronous, task directed flows

New system capabilities

Synchronous flows (meetings)

Technician work orders

Hybrid flows during problem resolution

GMRSG, Minneapolis, Sept 2010

Purdue Engineering
Focus: Ground Operations

› Improving Information Clutch Capacity to Assembly Tasks
 - Less real-time knowledge sharing and alignment
 - Costs, delays, availability risks are greatest during least informed phase of system operations

› Assembly / Test / Integration Tasks as Events

› Documentation and Reporting as Command and Network Flows

› Collaborative Anomaly / Problem Resolution
Tools to Support NASA Hybrid Coordination

› Device and Infrastructure Designs and Architectures Required

› Support for Mobile Technicians

› Electronic Work Control Systems (EWCS)
 - Reduce amount of paper
 - Reduce time delay in knowledge flow
 - Improve updating and management of versions
ECWS and Threat-Error Management

› Procedure Correct / Flawed

› Technician Correct / Flawed Performance

› Catch of Prior Errors
 - Local catch of local error
 - Catch of prior operational error
 - Resolution of design flaw or unintended consequences

› “Appropriate Non-Compliance”?
 - *Interesting challenge to HRA research paradigms*
Improving NASA Knowledge Sharing through Mobile Devices?

Cognitive Science and Systems Engineering Problems

- Gains of Smaller Screen Size Devices:
 - *Increased mobility*
 - *Decreased memory (delay) demands from display to task*

- Costs of Smaller Screen Size Devices:
 - *Decreased display access real estate*
 - *Increased memory (integration) demands of complex display*
ECWS Field Testing

› Thanks to Marshall Space Flight Center
 - Unexpected proof of concept / TRL - RRL jump

› Byrd Dissertation using Fujitsu Lifebook
 - Similar screen size, additional power and security

› Demonstration of Actual Device and Procedure
 - More interface and infrastructure testing needed
Elements of C3I Architecture Design

› Command & Control: decision-making and supervisory control networks as supported by an operational exchange of information via a comm relay network

› Communication: ground and space networks of multiple comm & data nodes for information production and relay

› Information: commands, telemetry, & data in varying formats
SoS refers to a class of design problems:
- that are comprised of an evolving collection of distributed and interoperating networks of heterogeneous systems,
- with multiple owners and operators,
- that require trans-domain solutions,
- which produce emergent behaviors not achievable by any one system in isolation, and
- satisfy a “global” need.
Analogues → C3I Architecture Trade Space

<table>
<thead>
<tr>
<th>C3I Design Trade Space Variables</th>
<th>Architectural Trade Space Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND AND CONTROL</td>
<td></td>
</tr>
<tr>
<td>allocation of decision-making rights</td>
<td>centralized (unitary)</td>
</tr>
<tr>
<td># of ground control room console operators</td>
<td>none</td>
</tr>
<tr>
<td>roles of in-situ operators</td>
<td>science: research</td>
</tr>
<tr>
<td>planning & scheduling of mission objectives</td>
<td>in-situ</td>
</tr>
<tr>
<td>planning & scheduling of daily ops</td>
<td>in-situ</td>
</tr>
<tr>
<td>anomaly & fault detection, diagnosis, & resolution</td>
<td>in-situ</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td></td>
</tr>
<tr>
<td>in-situ inter-element communications</td>
<td>RF: VHF and/or UHF</td>
</tr>
<tr>
<td>in-situ comm network design</td>
<td>habitat centralized and fixed</td>
</tr>
<tr>
<td>exploration assets can act as relays for other systems</td>
<td>no relay capability</td>
</tr>
<tr>
<td>in-situ base to external support relay modes</td>
<td>direct (outpost to ground)</td>
</tr>
<tr>
<td>in-situ base to external support relay visibility</td>
<td>sparse</td>
</tr>
<tr>
<td>multiple in-situ to external routes (includes backups)</td>
<td>none: just one route</td>
</tr>
<tr>
<td>external link protocols</td>
<td>point-to-point manually configured links</td>
</tr>
<tr>
<td>external link types (data distribution)</td>
<td>on-demand / shared</td>
</tr>
<tr>
<td>INFORMATION</td>
<td></td>
</tr>
<tr>
<td>type of data exchanged</td>
<td>engineering</td>
</tr>
<tr>
<td>form of information exchanged</td>
<td>data</td>
</tr>
<tr>
<td>format of data packaging</td>
<td>commercial (e.g., HAIPE)</td>
</tr>
<tr>
<td>storage and archival of project data</td>
<td>local</td>
</tr>
</tbody>
</table>
Tool and Graphical User Interface

Simulation Inputs
- Systems
 - Type
 - Manned vs. Unmanned
 - Location
 - Lunar, Space, and Terrestrial
- Links
 - Continuous and Dynamic
 - Connectivity from STK
- Activities
 - Functions
 - System assignment
 - Human vs. Machine Workload
Input Sensitivity Analysis for Model Verification

Verification within scenarios based on realistic SoS performance

Example input variable: human workload (vs. automation) assignment

As human workload ↑, we observe:
- affordability ↑
- safety is not affected
- human operability ↓ (amount that “machines” need crew or ground operators)

These behaviors match the equations for these FoMs.
Follow-up Projects

› Simulation Development with Java Tool for JPL

› NASA SBIR Project on Crew Autonomy Measures and Models for JSC
 - Phase 1 Completed July 2010
 - Phase 2 Proposal in Review

› Additional SBIR and Research Concept Development (Pending)
Questions?

› Ask Me Now

› Contact Me Later

– bscaldwell@purdue.edu
– http://web.ics.purdue.edu/~bcaldwel
– http://www.grouperlab.org
– http://www.insgc.org